
CSCI 210: Computer Architecture

Lecture 34: Caches III

Stephen Checkoway

Slides from Cynthia Taylor

1

CS History: The Williams Tube

• First random-access storage device
• Developed in 1946
• Displays a grid of dots over a cathode ray

tube (using an electron beam to strike
phosphor)

• Each dot represents a bit
• Each dot creates a small static electricity

charge
• Charge at each location is read by a metal

sheet in front of the display
• Needs to be periodically refreshed as charge

fades over time
National Institute of
Standards and
Technology, Public
domain, via Wikimedia
Commons

ArnoldReinhold,
CC BY-SA 3.0

Three types of cache misses

• Compulsory (or cold-start) misses

– first access to the data.

• Capacity misses

– we missed only because the cache isn’t
big enough.

• Conflict misses

– we missed because the data maps to the
same index as other data that forced it
out of the cache.

tag data
block address of misses

4
8

12
4
8

20
4
8

20
24
12

8
4

DM cache

Cache miss example (from StackOverflow)

32 kB direct-mapped cache

1. You repeatedly iterate over a 128 kB array
– All misses but the first access to each block are capacity misses

because the array does not fit in cache; the first are compulsory
misses

2. You iterate over two 8 kB arrays that map to the same cache
indices
– These are conflict misses because if you changed the locations of

the arrays to be consecutive, then both would fit in the cache

https://stackoverflow.com/a/33336918

Cache Miss Type

Suppose you experience a cache miss
on a block (let's call it block A). You
have accessed block A in the past.
There have been precisely 1027
different blocks accessed between your
last access to block A and your current
miss. Your block size is 32-bytes and
you have a 64 kB cache (recall a kB =
1024 bytes). What kind of miss was
this?

Selection Cache Miss

A Compulsory

B Capacity

C Conflict

D Both Capacity and

Conflict

E None of the above

Questions on associativity, replacement?

CACHE PERFORMANCE

I-cache vs D-cache

• Separate caches for instruction memory and data memory
• I-cache: instruction cache
• D-cache: data cache

Measuring Cache Performance

• Components of CPU time

– Program execution cycles

• Includes cache hit time

– Memory stall cycles

• Mainly from cache misses

• With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

=

=

Miss Cycles Per Instruction

Given

• I-cache miss rate = 2%

• D-cache miss rate = 4%

• Miss penalty = 100 cycles

• Base CPI (ideal cache) = 2

• Load & stores are 36% of instructions

I-cache D-cache

A .02 * 100 .04 * 100

B .02 .04

C .02 * .36 * 100 .04 * .36 * 100

D .02 * 100 .04 * .36 * 100

Cache Performance Example

• Given
– I-cache miss rate = 2%
– D-cache miss rate = 4%
– Miss penalty = 100 cycles
– Base CPI (ideal cache) = 2
– Load & stores are 36% of instructions

• Miss cycles per instruction
– I-cache: 0.02 × 100 = 2
– D-cache: 0.36 × 0.04 × 100 = 1.44

• Actual CPI = 2 + 2 + 1.44 = 5.44

Average Access Time

• Hit time is also important for performance

• Average memory access time (AMAT)

– AMAT = Hit time + Miss rate × Miss penalty

• Example

– hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss rate = 5%

– AMAT =

Cache Speed Factors

• Memory lookup time

• Hit rate

• Size

• Frequency of collisions

How Much Associativity

• Increased associativity decreases miss rate

– But with diminishing returns

• Simulation of a system with 64 kB D-cache, 64-byte blocks
Miss rate:

– 1-way: 10.3%

– 2-way: 8.6%

– 4-way: 8.3%

– 8-way: 8.1%

for(int i = 0; i<10,000,000;i++)
 sum+=A[i];
Assume each element of A is 4 bytes and sum is
kept in a register. Assume a direct-mapped 32 kB
cache with 32 byte blocks. Which changes would
help the hit rate of the above code?

Selection Change

A Increase to 2-way set associativity

B Increase block size to 64 bytes

C Increase cache size to 64 kB

D A and C combined

E A, B, and C combined

Performance Summary

• When CPU performance increases

– Miss penalty becomes more significant

• Decreasing base CPI

– Greater proportion of time spent on memory stalls

• Increasing clock rate

– Memory stalls account for more CPU cycles

• Can’t neglect cache behavior when evaluating system
performance

MAKING CACHES FASTER

Multilevel Caches

• Primary (or level-1) cache attached to CPU

– Small, but fast

• Level-2 cache services misses from primary cache

– Larger, slower, but still faster than main memory

• L-3 cache usually services multiple CPUs

• L-3 misses go to main memory

Multilevel Cache performance

• For primary (L-1) cache:
– Access time in cycles, typically 1

– Miss rate (fraction of L-1 cache accesses which miss)

– On a miss, the next level of the cache hierarchy is consulted

• For L-n cache for n > 1:
– Access time in cycles

– Miss rate (fraction of L-n cache accesses which miss)

– On a miss, the next level of the cache hierarchy is consulted

• Memory
– Access time in cycles

Cache Example: L-1 only

• Given

– CPU base CPI = 1

– L-1 access time = 1 cycle

– Miss rate = 10%

– Main memory access time = 400 cycles

• With just a primary (L-1) cache

– Effective CPI = 1 + 0.10 * 400 = 40

Cache example: L-1 and L-2

• L-1:
– Access time = 1 cycle (so included in the base CPI)

– Miss rate = 10%

• L-2
– Access time = 20 cycles

– Miss rate = 4%

• Memory access time of 400 cycles

• CPI = 1 + 0.10 * (20 + 0.04 * 400) = 4.6
[Compare to a CPI of 40 for L-1 only]

Cache Example: L-1, L-2, L-3

• L-1: access time = 1 cycle; miss rate = 10%

• L-2: access time = 20 cycles; miss rate = 4%

• L-3: access time = 50 cycles; miss rate = 1%

• Memory access time = 400 cycles

With your group, work out what the CPI is assuming a base CPI of
1.

Multilevel Cache Considerations

• Primary cache

– Focus on minimal hit time

• L-2 cache

– Focus on low miss rate to avoid main memory access

– Hit time has less overall impact

• Results

– L-1 cache usually smaller than a single cache

– L-1 less associative than L-2

Interactions with Advanced CPUs

• Out-of-order CPUs can execute instructions during cache miss

– Pending store stays in load/store unit

– Dependent instructions wait in reservation stations

• Independent instructions continue

Prefetching

• Hardware Prefetching

– suppose you are accessing a single field in each object in an array of
large objects

– hardware determines the “stride” and starts grabbing values early

• Software Prefetching

– Compiler adds extra instructions to load data before it is needed

Which data structure will have better memory
access times assuming you have a prefetcher?

A. ArrayList

B. Linked List

C. There will not be any difference

Writing Cache-Aware Code

• Focus on your working set

• If your “working set” fits in L1 it will be vastly better than a
“working set” that fits only on disk.

• If you have a large data set – do processing on it in chunks.

• Think about regularity in data structures (can a prefetcher
guess where you are going – or are you pointer chasing)

Reading

• Next lecture: More Caches!

31

	Slide 1: CSCI 210: Computer Architecture Lecture 34: Caches III
	Slide 3: CS History: The Williams Tube
	Slide 4: Three types of cache misses
	Slide 5: Cache miss example (from StackOverflow)
	Slide 6: Cache Miss Type
	Slide 7: Questions on associativity, replacement?
	Slide 8: Cache Performance
	Slide 9: I-cache vs D-cache
	Slide 10: Measuring Cache Performance
	Slide 11: Miss Cycles Per Instruction
	Slide 12: Cache Performance Example
	Slide 13: Average Access Time
	Slide 14: Cache Speed Factors
	Slide 15: How Much Associativity
	Slide 16
	Slide 18: Performance Summary
	Slide 19: Making caches faster
	Slide 20: Multilevel Caches
	Slide 21: Multilevel Cache performance
	Slide 22: Cache Example: L-1 only
	Slide 23: Cache example: L-1 and L-2
	Slide 24: Cache Example: L-1, L-2, L-3
	Slide 25: Multilevel Cache Considerations
	Slide 26: Interactions with Advanced CPUs
	Slide 27: Prefetching
	Slide 28: Which data structure will have better memory access times assuming you have a prefetcher?
	Slide 29: Writing Cache-Aware Code
	Slide 31: Reading

